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Analytical models are developed for the translation and rotation of metallic rods in a uniform electric field.
The limits of thin and thick electric double layers are considered. These models include the effect of stripes of
different metals along the length of the particle. Modeling results are compared to experimental measurements
for metallic rods. Experiments demonstrate the increased alignment of particles with increasing field strength
and the increase in degree of alignment of thin versus thick electric double layers. The metal rods polarize in
the applied field and align parallel to its direction due to torques on the polarized charge. The torque due to
polarization has a second-order dependence on the electric field strength. The particles are also shown to have
an additional alignment torque component due to nonuniform densities along their length. The orientation
distributions of dilute suspensions of particles are also shown to agree well with results predicted by a
rotational convective-diffusion equation.
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I. INTRODUCTION

Rod-shaped metal particles with 200 nm to 4 �m diam-
eters and lengths of 2–40 �m can be grown as homogenous
wires or with stripes of varying materials �1,2�. In the latter
case, material stripes along the particle provide a barcode
that can encode on the order of 10 bits of information. In
biological detection applications, the barcode is used to iden-
tify a hybridization or immunoassay reaction that can be per-
formed and detected in parallel with reactions corresponding
to many other particle types in a common chamber or micro-
fluidic channel �2,3�. Homogenous nano- or microwires have
been proposed as methods to construct electronic circuits,
nanosensors, and biological-electronic interfaces �4–7�. As-
sembly and orientation of metal nanowires has been demon-
strated using dielectrophoresis with patterned electrodes and
magnetophoresis with external magnets �8–11�. Such par-
ticles can also be manipulated with uniform electric fields
through electrophoretic translation and rotation �12,13�.

The electrophoretic motion of a particle is determined by
an electrostatic force exerted on surface charge, hydrody-
namic drag forces, a retarding force due to the flow of coun-
tercharges, and an electric relaxation force from the separa-
tion of positive and negative charges as the countercharges
move over the particle surface �14�. Although generally these
forces cannot be superimposed, their net effect on a particle
moving at constant velocity �rotational or translational� must
be zero. There has been extensive work on the modeling of
electrophoresis of both spherical and nonspherical particles.
Here we present a summary of the extensive work on mod-
eling electrophoretic particles. Although these models prima-
rily focus on nonconducting particles, we highlight aspects
that are specifically relevant to ideally polarizable �i.e.,
nonreacting� metal particles.

The most common model for single-particle electrophore-
sis, developed by Smoluchowski, is derived using at least
five basic assumptions �15,16�: �i� ��D /a�exp�ze� /2kT��1
where kT /e is the thermal voltage �approximately 25 mV�, �
is the zeta potential, �D is the Debye length, and a is the

characteristic particle length scale; �ii� zeta potential is uni-
form over the surface of the particle; �iii� applied field, E�,
does not disturb the charge distribution in the electric double
layer �EDL�; �iv� the particle is rigid and dielectric �such that
�p��m, where �p is the particle permittivity and �m is the
permittivity of the liquid�; and �v� the surrounding liquid is
unbounded. Under these conditions,

u =
�m�o

�
E� and 	 = 0, �1�

where u is the translational velocity of the particle, 	 is the
rotational velocity of the particle, �o is the uniform native
�i.e., due to spontaneous chemical surface reactions with the
electrolyte� zeta potential at the EDL shear plane, � is the
liquid viscosity, and E� is the applied field �17�. Assuming
�i�–�v�, Morrison �18� and Teubner �19� showed that Eq. �1�
is appropriate for dielectric particles of any shape �i.e.,
spheres, cylinders, ellipsoids, etc�.

If the EDL around a dielectric particle is thick, such that
�D
a, the simplest model of the motion is a balance of the
Coulombic force on the particle with the hydrodynamic drag.
For example, a spherical particle with surface potential, �,
would have a net charge of Q=4�a�m�. The Coulombic
force on the particle, QE�, is balanced by the Stokes’ drag
force, 6��au, to yield the Hückel equation,

u =
2��o

3�
E�, �2�

for the electrophoretic velocity �20�. When �D
a the trans-
lational velocity of a cylinder �e.g., modeled as a prolate
spheroid� is a maximum when the particle is aligned parallel
to the field and a minimum when the particle is perpendicu-
lar to the field. The translational velocity at any orientation is
therefore u��u�u�, where the subscripts � and � denote a
particle with the major axis oriented perpendicular and par-
allel to the applied field, respectively. Assuming �ii�–�v�, the
electrophoretic velocity of a small aspect ratio
�diameter/ length�1�, prolate spheroid with thick EDL is
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���o /2��E��u� ���o /��E�, �where the bounds are the
values of u� and u�� as shown by Harris �21�.

The �D
a analysis is useful but is only a limiting behav-
ior. For spherical particles, Henry �22� solved for an addi-
tional term, f�a�, that multiplies the right-hand side of Eq.
�2�, which varies from 2/3 to 1, and accounts for the retar-
dation force caused by the motion of EDL counterions. This
term links the limiting cases described by Eqs. �1� and �2�.
Ohshima �23� developed an expression for f�a� for cylin-
drical particles and Yoon and Kim �24� for spheroidal par-
ticles �he uses the variable CPR for his multiplicative term�
for the cases of the field parallel and perpendicular to the
particle. Stigter developed similar results for f�a� �he uses
yo� for highly charged cylindrical particles �25,26�.

The limit of ��D /a�exp�ze� /2kT��1 in the assumptions
for Eq. �1� implies that so-called surface conduction through
the particle’s electric double layer can be neglected. As the
charge density in the double layer increases with respect to
the conductivity of the bulk solution, the external field lines
in the vicinity of the particle bend into the double layer as
though its surface were an ion-conducting surface. For par-
ticles with high surface charge, �
kT /ze, but thin EDL
��D�a�, this high EDL charge density leads to a surface
conduction tangential to the charged particle surface. The
dimensionless Dukhin number �referred to as “Rel” in the
Russian literature�,

Du =
�s

�a
, �3�

compares the surface conduction of the EDL, �s, to the con-
ductivity of the bulk solution, �, and the characteristic par-
ticle scale, a �radius for spherical particles�. For Du�1, the
field lines of applied field are unaffected by the charge in the
double layer. For finite Du, the flow of ions through the
diffuse ion layers around the particle can create charge
buildup in the outer limits of the double layer at one end of
the particle and depletion at the other end. This change in ion
density creates concentration gradients that lead to diffusio-
phoresis and a modification of the EDL which affects net
electrophoretic motion �27�. O’Brien and Ward �28� derived
an analytical expression for the electrophoretic translation of
spheroidal particles as the zeta potential increases. Ho et al.
�29� used this model to determine the zeta potential of ellip-
soidal polystyrene particles with aspect ratios �diameter/
length� between 1.0 and 4.5. Their observations deviated less
than 10% from values obtained using Eq. �1�.

The depletion of ions from some EDL regions and accu-
mulation in others can cause significant distortion and polar-
ization of the EDL. Charge polarization is characterized by
an induced dipole moment �idm�. The degree of polarization
and the idm depend on applied field, particle shape, size, and
orientation, and on Du. For nonspherical particles, the exter-
nal field acts on the induced dipole moment to induce a
torque and rotational velocity. The induced dipole moment of
dielectric rodlike particles and the resulting particle rotation
has been investigated in the Russian literature �30–34� and in
models of rodlike molecules �35,36�. Dukhin and Shilov �37�
reviewed much of the work on induced dipole models for

spherical, ellipsoidal, and rodlike particles, and Mandel �38�
reviewed induced dipole models as they apply to rodlike
polyions.

In this study, we focus on �conducting� metal rodlike par-
ticles. In most cases these metal cylinders can be modeled as
ideally polarizable as they are small enough such that the
potential imposed by the external field along the particles is
insufficient to induce electrochemical reactions. The work of
Simonov and Dukhin �39� shows the translational velocity in
Eq. �1� is correct for an ideally polarizable particle of any
shape provided that ��D /a�exp�ze��o+E�a� /2kT��1, where
the additional term E�a is the induced potential and a is the
characteristic length along the direction of the electric field.
Under these conditions, surface conduction through the EDL
is minimal �Du�1�, and diffusiophoresis due to concentra-
tion polarization of the particle’s EDL can be neglected. The
particle and surrounding double layer both polarize, how-
ever. Initially, electrons within the metal particle very
quickly redistribute themselves through the metal to maintain
a uniform electric potential at the particle surface, and field
lines intersect the particle surface at right angles �Fig. 1�a��.
For time scales shorter than �ma /�s�D, electrolyte ions then
accumulate at the �nonreacting� particle boundaries and act
to shield the particle from electric flux. For time scales larger
than order �ma /�s�D, electrolyte ions completely shield elec-
tric flux from the particle and a final state is achieved where
field lines are everywhere tangential to the surface �Fig.
1�b��. In this final state, the particle boundary acts the same
as that of a perfect insulator. The time scale of the transition
is limited by the electromigration of positive and negative
ions from the solution to opposite sides of the particle sur-
face, creating a screening cloud that expels field lines �40�.
The charging time, �ma /�s�D, applies when the zeta poten-
tial does not exceed the thermal voltage ��o+E�a�kT /ze�.
As the zeta potential increases beyond the thermal voltage,
the relation between double-layer capacitance and charge
density becomes nonlinear and the charging time becomes a
function of the zeta potential �see Ref. �40� for a detailed

FIG. 1. Electric field lines around an ideally polarizable rodlike
particle in an electrolyte at two different times after an external field
is applied. �a� Initial state nearly instantaneously after the field is
applied. The relaxation time for the redistribution of electrons in the
metal particle, �R=�p /�s, is on the order of 10−18 s. After this time
the field lines intersect the conducting particle at right angles, al-
though no electrochemical reactions occur at the surface. �b� Final
state after the electromigration of ions to the particle surface
charges the double layer. This charging of the double layer occurs
on a time scale of order 10−6 s.
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discussion of charging time for systems with high zeta
potential�.

After the double layer polarizes, part of the ions within
the screening cloud around the particle remain mobile and
continue to migrate toward the electrode of opposite charge.
These “induced” countercharges drag fluid with them as they
move through the double layer. Simonov and Dukhin �39�
and Fixman and Jagannathan �41� included this effect in their
analysis of the polarized charge cloud around conducting
spheres and nonconducting infinite cylinders, respectively.
Fixman and Jagannathan �41� calculated the resulting elec-
trophoretic velocity and dipole moment for DNA molecules.
Bazant and Squires �42� and Squires and Bazant �40� de-
scribed in detail the liquid flow field generated around the
particle due to the motion of the induced countercharges
through the double layer. They termed this effect induced-
charge electro-osmosis �ICEO�. For particles with broken
symmetries, e.g., nonuniform surface properties, the flow
due to the electromigration of positive ions may exceed that
of negative ions �or vice versa�, causing the particles to
translate due to induced-charge electrophoresis �ICEP�
�42,43�.

Particles with reflection symmetry, such as the rodlike
particles of interest here, do not translate due to ICEP, but the
motion of the “induced” countercharges contributes to the
rotation of the particle �42�. The total rotational motion of a
rodlike particle in the thin EDL limit includes both the ICEP
rotation and the dielectrophoretic rotation. Yariv �44� re-
cently derived generic long time solutions for the ICEP trans-
lational and rotational velocities of arbitrary shaped conduct-
ing particles for the case of Du�1. His analysis includes the
dielectrophoretic contribution to translation of the particle in
nonuniform electric fields and rotation of the particle in uni-
form or nonuniform fields. Squires and Bazant �43� extend
their translational and rotational ICEP solutions to particles
with broken symmetries due to partial dielectric coatings and
include dielectrophoretic contributions to the motion. Sain-
tillan et al. used slender body theory to model the induced
charge electro-osmotic flow at the surface of cylindrical
metal particles and demonstrated increased hydrodynamic
interactions of particles due to these flows �45�.

For ideally polarizable rodlike particles with finite EDL,
experimental measurements of zeta potentials have used
variations of Eq. �2� to model translational motion �12,13�.
This approach assumes an evenly distributed �random� dis-
tribution of particle orientations in a dilute suspension of
cylinders. The average electrophoretic translation of the
particles, �u�, can therefore be described as

�u� = �
0

�/2

�u� cos � + u� sin ��sin �d� =
1

3
�u� + 2u�� ,

�4�

where � is the angle between the applied field and the major
axis of the particle �46�. Applying the limiting u� and u�

relations of Harris for �D
a, the average electrophoretic
translation of a prolate spheroid simplifies to Eq. �2�. Assum-
ing an evenly distributed assumption is accurate �as we
will discuss below, this is typically not the case�, the zeta

potential of rodlike particles with length
diameter and
thick EDLs is measurable using standard commercial zeta
potential systems. Van der Zande et al. used this approach to
measure the zeta potential of gold cylindrical particles with
�D /a values ranging from 1.5 to 6.0 �13�. Using particle
tracking, Davison et al. compared experimental electro-
phoretic values to a modified version of Eq. �4� which in-
cluded the corrections for high surface charge of Stigter
�12,25,26�. The particles investigated were gold cylinders
with �D /a values of approximately 1.0. The large �±30% �
difference between experimental values and predictions was
attributed to an orientation dependence of the particles. Both
authors, however, neglect translation and rotation due to the
induced dipole moment of the particles. These effects can
alter the measured average electrophoretic velocity of the
particles. Han and Yang have demonstrated the significance
of the orientation distributions for electrophoresis of spheroi-
dal particles, focusing specifically on models for dielectric
particles �47�.

In this paper, we present analytical and experimental stud-
ies of the translational and rotational electrophoresis of metal
rods with either homogenous or nonhomogenous surface
properties for both the limiting cases of thick and thin EDL.
We also explore the coupled effects of rotational electro-
phoresis, rotation due to gravity, and Brownian diffusion. We
include the effects of induced charge electrophoresis �i.e., the
effect of induced surface charges on the EDL and electro-
phoretic motion of the particle� and dielectrophoresis. The
next section describes our models for electrophoretic particle
translation and rotation and is divided into five subsections
describing the thick EDL limit particle rotation and transla-
tion, the thin EDL limit particle rotation and translation, par-
ticle motion in ac fields, particle motion due to gravity, and a
Fokker-Plank formulation for the orientation distribution of
polarized particles. The Experimental Procedure section de-
scribes our experiments quantifying particle motion and ori-
entation �including a particle image recognition and tracking
code�. The Results and Discussion section also shows quan-
titative comparisons between experiments and data. We close
with Conclusions and Recommendations.

II. THEORY

This section describes models for particle translation, ro-
tation, and orientation statistics. We consider limiting cases
for thick EDL ��D
c� and thin EDL ��D�b� in dc fields,
then extend these solutions to ac fields. We also consider
settling velocities due to gravity. We model a cylindrical par-
ticle with length L and radius r as a prolate spheroid with
characteristic half-lengths c=L /2 and b=r, as shown in Fig.
2. Using the spheroidal geometry enables transformation to
the curvilinear ellipsoidal coordinate system �48� in which
the relevant Laplace’s equation is separable. The axes of the
coordinate system, x1�, x2�, and x3�, are aligned with the two
minor axes �with equal lengths b� and the major axis �length
c� of the particle, respectively.

A. Thick EDL model

For particles with a thick EDL, we propose an approxi-
mation for the translation and rotation of the particle due to
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induced charge effects using similar assumptions to those
used by Hückel �20� in deriving Eq. �2�. These assumptions
lead us to a slight modification of dielectrophoresis results
obtained by Rivette and Baygents �49� and Jones �50� for the
force and torque on a rodlike metal and dielectric particles,
respectively. The analysis is also extended to include the
effects of stripes along the length of the particle on the
translation and rotation of the metal particles.

For the thick EDL case the double layer around the par-
ticle is extended and the motion of EDL counterions does not
appreciably contribute to particle drag. Particle motion is
therefore assumed to be a balance between the electrostatic
force and torque on the particle and the hydrodynamic drag.
This assumption was implemented by Hückel �20� to derive
Eq. �2� and by Han and Yang �47� in deriving the equations
describing the translation and rotation of dielectric rodlike
particles. This analysis is appropriate for spherical particles
when �D
as �where as is the radius of a sphere�. For cylin-
ders, however, the strictest condition for thick double layers
is such that the Debye length is much larger than the half-
length of the cylinder ��D
c�. As a simple model, we here
use a strict, thick double-layer model ��D
c� to estimate the
physics of the intermediate double-layer thickness regime
when the Debye length exceeds the particle radius but is less
than the particle half-length �b��D�c�. As we shall see in
Sec. IV, the thick double-layer model does very well in pre-
dicting particle alignment physics for electric double-layer
thicknesses larger than cylinder radius and smaller than the
cylinder half-length.

The thick EDL electrophoresis problem is separated into
two parts: the motion due to the induced polarization of the
particle �subscript DEP to denote dielectrophoresis�, and the
motion due to a �perhaps nonuniform� native zeta potential.
Force and torque are then summed to obtain the following
equations of particle motion,

uThick = 	 ee

d�

+
I − ee

d�


�FDEP + Fnat� and �5a�

�Thick = 	 ee

d�,�
+

I − ee

d�,�

�TDEP + Tnat� �5b�

where d� and d� are the translation drag coefficients, and d�,�

and d�,� are the rotational drag for rotation about the primary
and secondary axes.

The force and torque on a metal particle are due to the
Maxwell stresses acting on the particle surface. The general
expressions for this force, FDEP, and torque, TDEP, are

FDEP = �
Sp

�	�n · E�E −
E2

2
n
dS and �6a�

TDEP = �
Sp

r � �	�n · E�E −
E2

2
n
dS , �6b�

where E is the local electric field and n is everywhere nor-
mal to the particle surface �51,52�. Using a multipole expan-
sion and ignoring far-field effects, Rivette and Baygents �49�
reformed Eqs. �6a� and �6b� in terms of the applied electric
field, E�,

FDEP = ��
Sp

	�n · E��E� −
1

2
�E� · E��n
dS �7a�

which simplifies to FDEP=0 since the applied field E� is
uniform, and

TDEP = �Mp · E�� � E�. �7b�

The polarization tensor, Mp, is derived from the dipole mo-
ment on the conducting particle under the conditions de-
scribed by Eq. �17� but with the boundary condition �cond
=0 on the particle surface. The tensor depends on the shape
of the particle and for a spheroid is as follows:

Mp =
�Vp

L�

ee +
�Vp

L�

�I − ee� . �8�

Here we have expressed Mp in terms the volume of the
spheroid, permittivity of the medium, and the polarization
factor, L. The polarization factor is defined as

L1,L2 = L� =
b2c

2
�

0

� ds

�s + c2�1/2�s + b2�2 and L3 = L�

=
b2c

2
�

0

� ds

�s + c2�3/2�s + b2�
, �9�

which can be determined analytically in terms of the aspect
ratio, ��b /c �c�b�,

L� =
1

2�1 − �2�
−

�2

4�1 − �2�3/2 ln	1 + �1 − �2�1/2

1 − �1 − �2�1/2
 �10�

L� = −
�2

�1 − �2�
+

�2

2�1 − �2�3/2 ln	1 + �1 − �2�1/2

1 − �1 − �2�1/2
 . �11�

The resulting dielectrophoretic translation and rotation of the
spheroid particle in a uniform electric field is

uDEP = 0 and �12a�

�DEP = �	 �Vp

d�,�L�

ee +
�Vp

d�,�L�

�I − ee�
 · E� � E�.

�12b�

FIG. 2. Spheroid geometry used to model the cylindrical par-
ticles. The coordinate system is aligned with the x3� component par-
allel to the primary axis of the particle. The directional vector, e,
is oriented along the length of the particle and the angle of the
particle is measured between this vector and the direction of the
applied field. The field is applied parallel to the direction of the
gravitational acceleration vector, g.
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We use a similar analysis to estimate the force and torque
on a striped particle due to segments of varying surface
charge density, ��z�, along the length. We can relate the sur-
face charge to the native zeta potential through the capaci-
tance, calculated by Jeans �53� for a conducting prolate
spheroid as

Cs = 4�c��1 − �2	ln
1 + �1 − �2

1 − �1 − �2
−1

. �13�

This capacitance is for a uniform cylinder. For the case of a
striped particle, we treat the contributions of the various
metal stripes by linearly superposing their capacitance values
�as with capacitors in parallel�. We note that Eq. �13� is
therefore only an approximation to the true overall capaci-
tance value of a striped particle and should be valid when the
stripe length is greater than the rod radius. For narrow
stripes, this equation may not fully describe the stripe-to-
stripe electrostatic interaction.

The force on the particle due to the native zeta potential is
obtained by integrating over the surface area to find the net
Coulombic force on the surface,

Fnat =
CsE�

2
�

−1

1

��Z��dZ� �14a�

with Z�=x3� / c. The net torque determined from the Coulom-
bic forces and respective moment arms is

Tnat = p1 � E�, �14b�

where

p1 =
Csc

2
�

−1

1

Z���Z��dZ�e . �14c�

The translational drag components in Eq. �5a� are calcu-
lated as quasistatic �i.e., neglecting inertia� values for Stokes
flow around a spheroid particle �54�. The drag on a spheroid
with an aspect ratio, ��1, moving parallel to the primary
particle axis is approximated as �55�

d� �
4��c

ln�2/�� − 1/2
, �15a�

and the drag for motion perpendicular to the primary axis is
approximated as

d� �
8��c

ln�2/�� + 1/2
. �15b�

Since rotation about the primary axis is not of interest, we
ignore the rotational drag component d�,�. The hydrodynamic
drag coefficient for rotation about an axis perpendicular to
the primary axis, d�,�, is approximated as �56�

d�,� �
8��c3

3�ln�2/�� − 1/2�
. �16�

If ��
1
2 , the approximations in Eqs. �15� and �16� are within

1.5% of the exact solutions. Note that these drag models do
not take into account electroviscous �or so-called electrolyte
friction� effects on particle drag. The zeta potentials of inter-

est here are less than or equal to the thermal voltage, and so
we expect electroviscous effects to be negligible �see Stigter
�57� and van de Ven �58��.

To confirm the consistency of our solution, we consider
two special cases for an ideally polarizable spheroidal par-
ticle with a thick EDL and a native zeta potential that is
uniform over the particle’s surface. If the induced polariza-
tion is �incorrectly� neglected, the velocity in Eq. �5a� for the
motion of a spheroid particle oriented parallel and perpen-
dicular to the applied field is u� = ���o /��E� and u�

= ���o /2��E�, respectively. Ignoring the polarization would
suggest that the particle does not rotate. These translational
velocities for a particle with aspect ratio ��1 match those
suggested by Harris �21� for a dielectric particle. If the ef-
fects of induced polarization are included, the translation still
reduces to the translational velocity limit proposed by Harris,
although the particle will rotate. For a particle with aspect
ratio �=0.05 �e.g., the particles used in this study�, the val-
ues for the translational velocities are u� = �13��o /15��E�

and u�= �17��o /30��E�.

B. Thin EDL model

In the case of a thin EDL, double-layer polarization in-
duces a nonuniform potential along the particle surface
which we refer to as the induced zeta potential. This induced
zeta potential can be interpreted as the potential associated
with ionic charge which is accumulated at a nonreacting par-
ticle surface. We solve for this zeta potential by subtracting
the electrostatic potential at the particle surface when the
field is initially applied from the potential at the surface after
the double layer has polarized. The induced zeta potential is
then used to find the resulting ICEP translation and rotation
of homogenous metal particles. As discussed previously, par-
ticle motion in the thin EDL limit is the superposition of
ICEP and dielectrophoresis �see Refs. �43� for a detailed dis-
cussion of this superposition�. We therefore solve for the
ICEP motion and add this solution to the dielectrophoretic
motion calculated from the thick EDL model. For particles
with metal stripes, we consider the additional translation and
rotation due to permanent dipoles generated by forces on the
different surface charge for each material.

For the thin EDL case ��D�b�, we assume the particle is
suspended in a symmetric electrolyte and the potential at the
particle surface, �o+E�c, is sufficiently small to maintain the
inequality ��D /b�exp�ze��o+E�c� /2kT��1. As mentioned
above, upon application of an external field, E�, electrons
within the metal particle quickly redistribute themselves �af-
ter a time scale of order �p /�p� and maintain an equipotential
particle surface �as in Fig. 1�a��. The electrostatic potential,
�cond, outside the particle can be found by solving

�2�cond = 0, �17a�

subject to the boundary conditions

�cond = �o �17b�

on the particle surface and
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��cond = − E� �17c�

far from the particle. We choose the applied electric potential
at the particle center to be zero, ���x=0�=0. The potential at
the surface of
the particle, �o, is then approximated as the “native” zeta
potential of the particle, �o.

After the �mc /�s�D time scale �Fig. 1�b��, the potential
outside the particle, �ins, can be found by solving

�2�ins = 0, �18a�

with the boundary conditions

n · ��ins = 0 �18b�

at the particle surface and

��ins = − E� �18c�

far from the particle. The “induced” zeta potential, � f, de-
scribing the final polarized state of the double layer is ob-
tained from the difference between the potentials of �cond
and �ins at the potentials at the particle surface, Sp, so that
� f =�cond�Sp�−�ins�Sp�.

The potential distribution outside a conducting spheroidal
particle in a uniform field, E�, is found by simplifying the
known solution for an ellipsoid �in ellipsoidal coordinates�
�45� to a spheroid �in spheroidal coordinates�

�cond = − E� · x� + �
i=1

3

��o + E�,xi�
xi��

Ki���
Li

, �19�

where Li is defined in Eq. �9�. The function Ki��� is defined
as

K1,K2 = K� =
b2c

2
�

�

� ds

�s + c2�1/2�s + b2�2

and K3 = K� =
b2c

2
�

�

� ds

�s + c2�3/2�s + b2�
, �20�

where the integration boundary � is the spheroidal coordinate
describing the spheroid surfaces which are confocal with the
particle surface, and s is a dummy integration variable. The
solution for the potential �cond�Sp� is specified in the bound-
ary conditions for Eq. �17� as �o and is the value obtained
when integrating Eq. �19� over the surface of the particle
��s=0�.

Next, the solution for the potential distribution outside an
insulating spheroidal particle in a uniform field, E�, is

�ins = − E�x� + �
i=1

3

��o + E�,xi�
xi��

Ki

�1 − Li�
. �21�

Again, the solution is found by simplifying the known solu-
tion for an ellipsoid �in ellipsoidal coordinates� �45� to a
spheroid �in spheroidal coordinates� �51�. The potential at the
surface of the insulating spheroid, �ins�Sp�, is then

�ins�Sp� = −
E�,x1�

x1�

�1 − L��
−

E�,x2�
x2�

�1 − L��
−

E�,x3�
x3�

�1 − L��
, �22�

and the resulting induced zeta potential is

� f�Sp� = �o +
E�,x1�

x1�

�1 − L��
+

E�,x2�
x2�

�1 − L��
+

E�,x3�
x3�

�1 − L��
. �23�

Next, we use the sum of the native and induced zeta po-
tentials as a boundary condition to a continuum flow balance
of viscous and electric forces around the particle. The elec-
trophoretic particle motion is found by solving the Stokes
equations with an additional term to account for the body
force on the charge of the EDL resulting from � f. We sepa-
rate this boundary problem into two regions, the “inner” and
“outer” regions, and solve using a method of matched
asymptotic expansions. The inner region extends to the edge
of the double layer, Sp

+, where the body force acting on the
charge, �eE, drives the flow. In the outer region, the liquid
outside the double layer, the charge density, �e, is essentially
zero, and the Stokes equation reduces to its classical form.
The velocity at Sp

+, determined from this matched asymptot-
ics analysis, produces a net rotation and translation of the
particle formulated using the Lorentz reciprocal theorem.
Fair and Anderson �59� implemented this technique for an
ellipsoidal particle to obtain the following solutions for the
translation and rotational velocities of an ellipsoidal particle
subject to an arbitrary slip velocity field, vs,

u = −
1

3Vp
� �

Sp
+

�n · r�vsdS and �24a�

� = −
1

Vp
G ·� �

Sp
+

�n · r�r � vsdS , �24b�

where u is the translation velocity of the center of mass and
� is the rotational velocity vector. For a spheroid, G
= �2b2�−1ee+ �b2+c2�−1�I−ee�, Vp=4/3b2c is the volume of
the particle, and e is a unit vector along the primary axis. For
electrophoretic motion, the slip velocity at the shear plane
around the particle is

vs = −
��

�
Es, �25�

which is equivalent in magnitude to Eq. �1�. In the current
problem, � may vary over the particle’s surface and the vec-
tor, Es, is the “local” electric field at Sp

+. The local field is
determined from the gradient of Eq. �22�,

Es = − ��ins = �I − nn� · 	 ee

�1 − L��
+

�I − ee�
�1 − L��
 · E�.

�26�

Together, Eqs. �23�–�26� provide the ICEP translational
and rotational velocities of an ideally polarized spheroidal
metal particle with any arbitrary native zeta potential, �o.
Since the zeta potential is a scalar value, uThin and �Thin can
be represented as
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uThin = uDEP + uICEP + unat and �27a�

�Thin = �DEP + �ICEP + �nat, �27b�

where uDEP and �DEP are the translation and rotation due to
dielectrophoresis defined in Eq. �12�, uICEP and �ICEP are
due to ICEP, and unat and �nat are due to the native zeta
potential. The translation due only to ICEP is

uICEP = −
�

3Vp�
� �

Sp
+

�n · r�Es�insdS , �28a�

which is identically zero. The rotation due to ICEP is

�ICEP = −
�

Vp�
G ·� �

Sp
+

�n · r�r � Es�insdS . �28b�

These results demonstrate that the polarization causes par-
ticle rotation but does not affect translation, as polarization
does not change the net charge of the particle/EDL system.
This holds for metal particles with and without uniform zeta
potentials.

The native zeta potential of striped-metal particles will
vary along the length of the particle due to the varying sur-
face chemistry. The zeta potential is therefore only a function
of the location along the length, �o=�o �z��. In this case, the
translation and rotation of the particle are �59�

unat =
�

�
	ao

2
I −

A2,�ee + A2,��I − ee�
2


 · E� and �29a�

�nat =
3�

4�c
a1 � E�. �29b�

The terms ao, a1, and A2 are determined from the distribution
�o�Z�� with Z�=x3� / c:

ao = �
−1

1

�o�Z��dZ�, �30a�

a1 = �
−1

1 Z��o�Z��
�1 − L�� 	1 + �2 + Z�2��2 − 1�

1 + �2 + Z�2��4 − 1�
dZ�e , �30b�

A2,� = �
−1

1

�o�Z��	1 +
Z�2 − 1

�1 − L���1 + ��2 − 1�Z�2�
dZ�, and

�30c�

A2,� = �
−1

1

�o�Z��	1 −
1 + �2�2 − 1�Z�2

2�1 − L���1 + ��2 − 1�Z�2�
dZ � .

�30d�

Two interesting cases arise for an ideally polarizable
spheroidal particle with a native zeta potential that is uniform
over the particle’s surface. If the induced polarization is �in-
correctly� ignored, the velocity in Eq. �28� reduces to Eq. �1�
and rotation is zero, consistent with the results of Morrison
�18� and Teubner �19�. If the effects of induced polarization
are included, the translation still reduces to Eq. �1�, consis-

tent with the results of Simonov and Dukhin �39�, but the
particle rotates.

Equation �29b� shows that applied fields can generate ro-
tational velocities on particles with nonuniform native zeta
potentials. In such cases, particle orientation is a function of
the zeta potential distribution along the particle. In most
cases, the particle will align with the more positively charged
end toward the low-potential electrode and the more nega-
tively charged end toward the high potential electrode. The
rotations described by Eqs. �12b� and �28b� also tend to align
the particles with the applied field. Since the polarization is
dependent on orientation, this rotational displacement will be
less than 90° �assuming no Brownian motion�. The rotational
velocities in Eq. �27b� superpose linearly and generally com-
pliment one another. Although the case can arise in which
�nat may oppose �DEP and �ICEP if, for example, the par-
ticle were initially oriented with the more positively charged
end toward the high-potential electrode.

D. AC field effect

The results in Secs. II A and II B for direct current �dc�
applied fields can be modified for alternating current �ac�
fields. This modification is often necessary since ac fields are
commonly used in electrophoresis experiments to avoid
electro-osmosis of the bulk fluid. The applied field may be
written as E��x� , t�=E��x��Re�exp�i	ot��, where E��x�� is
the spatial component of the applied field, i=�−1, 	o is the
angular frequency of the applied field, t is time, and Re de-
notes the real part of the expression. The time-averaged
translation and rotation may be computed by substituting the
field E��x� , t� for E��x�� in the velocities in Eqs. �5� and
�27� and then integrating them as �49�

�u� =
	o

2�
�

0

2�/	o

u�x�,t�dt and �31a�

��� =
	o

2�
�

0

2�/	o

��x�,t�dt . �31b�

The resulting time-averaged velocities in a spatially uni-
form field will be �u�=0 for all translational velocities. Simi-
larly, the time-averaged rotational velocities due to the per-
manent dipole on a particle with thick or thin EDL will be
��nat�=0. Time averaging the rotational velocities due to the
induced polarization reduces the velocities by a factor of 1 /2
such that ��ICEP�=�ICEP /2 and ��DEP�=�DEP /2. The polar-
izability of a dielectric particle in an ac field becomes com-
plex with a dependence on complex permittivity of the par-
ticle and the medium. For metal particles, the permittivity
term in the velocity equations remains real.

E. Gravitational settling

Gravitational forces also contribute to the translation and
rotation of rodlike metal particles. The settling problem is
separated into two parts: the motion due to gravity and the
motion due to buoyancy. Force and torque are summed to
obtain the following equations for particle motion;
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us = 	 ee

d�

+
I − ee

d�


 · �Fgrav − Fbuoy� and �32a�

�s = 	 ee

d�,�
+

I − ee

d�,�

 · �Tgrav − Tbuoy� �32b�

with drag components, d, from Eqs. �15� and �16� �55�. The
gravitational and buoyant forces on a spheroidal particle with
nonuniform density along its length, �p�Z��, are defined as

Fgrav = mpg = �a2c�
−1

1

�p�Z���1 − Z2��dZ�g and �33a�

Fbuoy = mfg = Vp� fg , �33b�

where mp is the mass of the particle, mf and � f are the mass
and density of the fluid displaced by the particle, and g is the
gravitational acceleration vector shown in Fig. 2. For a uni-
formly dense particle, the density function can be replaced
by a constant value, �p, and the gravity force reduces to
Fgrav=Vp�pg.

The settling velocity resulting from the forces in Eq. �33�
depends on the particle orientation which may be affected by
gravitational and buoyant torques. The gravitational torque
on a spheroidal particle with nonuniform density along its
length is

Tgrav = mprcm � g = �a2c2�
−1

1

�p�Z���1 − Z�2��Z� − Zcm� �dZ�e

� g , �34a�

with the moment arm about the center of mass, rcm, defined
as

rcm = Z� − Zcm� = Z� −
�a2c

mp
�

−1

1

�p�Z���1 − Z�2��Z��dZ�.

�34b�

The buoyant torque on a spheroidal particle with moment
arm about the center of buoyancy, rcm, is

Tbuoy = mfrcb � g , �35�

which simplifies to Tbuoy=0 for spheroidal particles. Par-
ticles can have a significant gravitational rotation due to the
large difference in specific gravity between the contrasting
metals in the particle stripes. The resulting velocities from
the gravitational force may be superimposed with the elec-
trophoretic solutions for dc or ac fields to determine the net
motion of the particle.

F. Fokker-Planck formulation for orientation distribution

The rotational velocities described by Eqs. �5� and �27�
and above for the respective limits of �D
c and �D�b tend
to align particles toward a preferred orientation with respect
to the applied field. For the case of a spatially uniform field,
particles are aligned with the major axis parallel to the ap-
plied field. If the field is applied parallel to the direction of
gravity, particle alignment may be enhanced by a gravita-

tional torque. This �deterministic� alignment due to rotational
electrophoresis and gravity is counterbalanced by the �en-
tropic� forces of diffusion. A population of particles �in a
dilute
mixture of particles with large particle-to-particle distances�
will then acquire a probability density function �PDF� de-
scribing the orientation distribution, �. This distribution is
governed by the Fokker-Planck equation

��

�t
+ � · ��� − D� · ��� = 0, �36�

in which � is the angular velocity vector ���� in an ac field�
and D� is the coefficient tensor of rotational diffusion �60�.
This equation describes the rotational convective diffusion of
the particles assuming negligible particle-particle interac-
tions. For an axisymmetric particle such as a spheroid, � is
the angular velocity about the particle’s minor axis and D�

becomes a scalar quantity,

D� = kT/d�,� =
3kT

8��c3 �ln�2c/b� − 1/2� , �37�

describing the rotational diffusion coefficient perpendicular
to the primary axis with d�,� defined by Eq. �16�. Assuming
the distribution has reached a steady state and rotation into
the plane �angle �� is ignored, Eq. �36� can be nondimen-
sionalized as

d

d�
��Pepol sin � cos � + Peperm sin ��sin � + sin �

d�

d�
 = 0,

�38�

where Pepol= �	pol� /D� and Peperm= �	perm� /D� are the ro-
tational Peclet numbers for the induced �DEP and ICEP� and
permanent �gravity, buoyancy, and native charge� dipoles,
respectively. The permanent dipole parameter may include
rotation due to gravity or nonuniform native zeta potentials
in a dc field. The solution of ���� must satisfy the integral
normalization condition,

2��
0

�

����sin �d� = 1. �39�

This general equation applies to either the thin or thick
EDL case since we use a nondimensional Pe. Analytical and
numerical solutions to Eq. �38� were developed to ensure
consistency. The analytical solution is obtained by direct
integration of Eq. �38�:

���� = �o exp	Pepol

2
�cos2 � − 1� + Peperm cos �
 . �40�

The normalization value of the PDF, 1/�o, is difficult to
obtain analytically and is here calculated numerically.

We have confirmed our solution for ���� given by
Eq. �40� using a Monte Carlo simulation of the rotational
electrophoresis and diffusion problem. The solution of the
rotational Langevin equation �61� is
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I

d�,�

d	L�t�
dt

+ 	L�t� = 	�t� +
��t�
d�,�

, �41�

in which the dynamics of the particle are modeled for indi-
vidual time steps to determine the overall orientation statis-
tics �60,62�. In Eq. �41�, I is the moment of inertia of the
particle, 	L�t� is the angular velocity of the particle at time t,
	�t� is the velocity due to the external field �Eq. �5b�� for
thick EDL or Eq. �27b� for thin EDL plus Eq. �32b� for
gravity�, and ��t� /d�,� is the normalized white noise driving
torque due to Brownian motion. The inertial term is ignored
as the particle dimensions are on the order of a micrometer.
A comparison of the normalized analytical result in Eq. �40�
and numerical results �from Monte Carlo simulations of Eq.
�41�� is shown in Fig. 3 for varied combinations of Pepol and
Peperm. The Monte Carlo solution used 1000 time steps and
10,000 noninteracting particles for each
combination of Pepol and Peperm values.

The Fokker-Planck analysis and the Monte Carlo simula-
tion methods are consistent, and the normalization method
for the analytical solution robust. For even moderate values
of either Penat or Peperm, the orientation distribution is sig-
nificantly nonuniform. This shows that assumptions of
equally distributed orientation for the purpose of estimating
translation motion may be incorrect even at relatively low
fields, especially for particles with a nonuniform native zeta
potential. Equation �4� in fact requires a modification to
weight the translational velocities by the shape of ����:

�u� = �
0

�/2

�����u� cos � + u� sin ��sin �d� . �42�

Equation �42� describes the average �over a population of
dilute particles� translational velocity as determined by the
rotational orientation distribution.

III. EXPERIMENTAL PROCEDURE

We have performed experiments quantifying the motion
and rotational distribution of metal rodlike particles subject
to electric fields. We use a dilute particle solution and both
relatively high- and low-conductivity solutions to explore the
effects of double-layer thickness. The particles were aligned
in an ac electric field to minimize net translation due to elec-
trophoresis. We use a setup where particles are allowed to
settle along the axis of a channel and use custom particle
image recognition and tracking routines to quantify particle
motion. We use this data to validate our particle rotational
electrophoresis models.

A. Particle imaging setup

The particle orientation experiments were performed in a
borosilicate capillary with a 200 �m�2 mm rectangular
cross section �Vitrocom, Mountain Lakes, NJ�. The capillary
was 10 cm in length and mounted vertically using an acrylic
fixture to minimize interaction of particles with capillary
walls as they settle. A schematic of the experimental setup is
shown in Fig. 4.

The particles investigated were pure silver �111111�, pure
gold �000000�, and 50% gold and silver �111000� Nanobar-
code® particles �Nanoplex, Menlo Park, CA�. The binary
code identifies the particle type where 1 indicates silver and
0 gold. They have lengths of 6 �m ±30 nm and diameters of
318 nm ±50 nm �1,3�. The two working liquids were deion-
ized water �pH 5.5, 2 �S/cm� and potassium chloride solu-
tion �0.14 mM, pH 5.3, 21 �S/cm�. No surfactants were
added to the working or particle solutions. For each experi-
ment, a single particle type was introduced into the capillary
along with a working solution and allowed to equilibrate to

FIG. 3. Comparison of analytical and numerical solutions for
the normalized orientation distributions of spheroidal particles with
a dipole contribution from polarization and a permanent dipole
from native surface charge and/or gravity. Several Peclet number
combinations were selected to confirm consistency between the so-
lutions over a range of conditions. The symbols show selected data
points for the orientation distribution solution solved numerically
using a Monte Carlo solution of the Langevin equation. The solid
lines are the analytical solutions to the Fokker-Planck equation for
the orientation distribution.

FIG. 4. Schematic of the experimental setup for particle imaging
experiments. Particles flow through a capillary supported by a flow
cell oriented perpendicular to the gravitational vector. The ends of
the flow cell are connected to a high-voltage amplifier that supplies
the amplified ac signal from a function generator. The particles are
imaged using a CCD camera and 60� magnification objective. Par-
ticle illumination is provided using forward scatter from a halogen
light source.
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eliminate any flow due to a pressure head. The particles were
electrokinetically oriented by an alternating electric field ap-
plied along the length of the capillary with platinum wires.
The alternating field eliminated any net electro-osmotic or
pressure-driven flows in the capillary. A Trek 10/10B ampli-
fier amplified the field supplied from an Agilent 3200
wave-form generator.

The imaging system, shown in Fig. 4, consists of a Nikon
inverted epifluorescent microscope with a 90° mirror placed
between the objective turret and the objective; this changes
the vertical object plane to a horizontal image plane. Back
illumination through the channel was provided by an exter-
nal halogen light source with a fiber optic light guide �Carl
Zeiss MicroImaging�. A Nikon oil immersion objective
�M =60, NA 1.4� with a working distance of 210 �m was
used to view the center plane of the capillary. Images of the
particles within the capillary were recorded using a Cooke
Pixelfly charge-coupled device �CCD� camera �Cooke Cor-
poration, Romulus, MI� with a 640�480 pixel array and
12-bit readout resolution. The camera was externally trig-
gered with a pulse generator �Berkeley Nucleonics Corpora-
tion, San Rafael, CA� to obtain images at frame rates ranging
from 1 to 5 fps. A 0.6� lens was included in the optical path
on the camera port to enable the CCD array to capture a
larger field of view with a negligible loss in image resolu-
tion. A total of 1061 images were taken for each experiment.
Figure 5 shows representative images of particles settling
through the flow cell with and without an applied field. Each
of the images in Fig. 5 were obtained by arithmetically
summing nine images with low particle density. Typically,
we limit particle density so that we obtain 5–10 particles
in each image �corresponding to particle number densities
of 7.7�104 to 1.5�105 particles/�L and nL3 values of
2�10−3 to 4�10−3�. Three examples of two-dimensional
probability density functions of particle locations are shown
in Fig. 6. The figure shows the probability density of finding
some part of the particle surface at some position relative to
the particle center. Data from three representative field
strengths are shown.

The effects of image noise in the experimental data re-
quired that we perform measurements of the particle rota-
tional diffusivity. We measured this value for Ag particles at
ten frame rates varying from 2 to 20 fps. The particles were
imaged while settling through the vertical capillary with no
applied electric field.

We also performed experiments with a 30 V/cm sinu-
soidal field and applied frequencies ranging from
100 to 800 Hz using pure silver particles in potassium chlo-
ride solution �0.1 mM, pH 5.3, 21 �S/cm� working solution.
The latter experiments were used to select an alternating field
frequency that ensured quasisteady particle motion while ex-
ceeding the detectable limit of discrete oscillations in the
translation of the metallic particles. Discrete oscillations
were undetectable in frequencies above 10 Hz �100 ms pe-

FIG. 5. Pure silver particles in DI water imaged as they settle
through the flow cell. �a� Summation of nine images at 3.3 s inter-
vals showing the particles settle in random orientations without an
applied field. Typical settling velocities are on the order of a few
micrometers per second and vary depending on orientation. �b�
Summation of nine images at 3.3 s intervals showing particles in an
ac field of 100 V/cm at 100 Hz applied along the gravity vector.
The field aligns the particles as they settle, causing them to settle
faster than randomly oriented particles.

FIG. 6. Measurements of two-dimensional probability density
functions of Ag particles in deionized water determined from image
data. Each PDF demonstrates the probability density of finding
some part of the particle at each given location relative to its center.
PDFs were constructed by analyzing images of approximately 5000
particles at three electric fields. �a� PDF for an applied field of
10 V/cm. At this field strength, the torque on the particles due to
polarization is relatively weak compared to their thermal energy and
particles are only weakly aligned. �b� PDF for an applied field of
50 V/cm. The electric torque more strongly aligns particles in the
direction of applied field although the effect of diffusion is still
apparent. �c� PDF for an applied field of 90 V/cm. At this field
strength, the rotational electrophoresis dominates over the effects of
diffusion.
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riod� for the conditions explored. The 10 ms period �or
100 Hz frequency� of the alternating field was beyond all
relevant timescales for the particle motion. This is confirmed
in Fig. 7, which shows a plot of measured rotational Peclet
numbers obtained from imaged orientation distributions
versus the period of the applied field. The rotational Peclet
numbers are constant in the low-frequency region of interest
as the particle motion is in the electrostatic charging regime.

B. Particle tracking velocimetry

Particle images were analyzed using a custom particle
tracking code written in MATLAB �The MathWorks, Inc.,
Natick, MA�. Each image was interrogated to find the major
axis angle and the coordinates of the particle image centroid.
The code analyzes the projection of the particle orientation
onto the image plane �the depth of field was 2.8 �m�. Par-
ticle positions in succeeding image pairs were then compared
to determine particle translation and rotational motion. Indi-
vidual particles were identified across images using a “best
match” routine described below.

A typical experiment consisted of a series of 1061 images
of particles. Particles settled at approximately 4 �m/s and so
each particle was imaged about 90 times before leaving the
field of view. The average image from each experiment was
subtracted from individual images to remove intensity bias
from nonuniform illumination. The images were then filtered
using a Weiner filter to reduce white noise and then binarized
based on pixel intensity. Particles were located in the image
using a combination of edge detection and morphological
processing, as described schematically in Fig. 8. A Prewitt
filter was applied to detect the edges of the bright particles
on contrasting dark background. The resulting particle out-
lines were filled then eroded and dilated using a 2�2 pixel
filter to remove spurious pixels. The remaining connected
regions of light pixels, each representing a potential particle,
were then fit with an ellipse using MATLAB’S best-fit
functionality �the regionprops routine�. Potential particles
whose representative ellipses had an eccentricity greater than
0.97 and a length in the range of 4–8 �m were accepted as
valid particle images. The centroid coordinates and orienta-

tion of each particle were then calculated from the remaining
representative ellipses �regionprops routine outputs�.

Particle angular and translational displacements between
image pairs were calculated for particles which met a “best
match” criterion. The matching scheme used a �-squared test
based on the position and orientation of the particle

�2 = 	 �x2 − x1�2

�x
2 +

�y2 − y1 − �yPIV�2

�y
2 +

��2 − �1�2

��
2 
 ,

�43�

where the subscripts 1 and 2 refer to the image in which the
particle was found, x and y are the horizontal and vertical
coordinates, respectively, theta is the particle angle, and �x,
�y, and �� are the variances of the locations and angles of all
particles in the second image. A similar approach was used
by Takehara et al. �63�. We used micrometer-resolution par-
ticle image velocimetry �64� �using the entire image as the
interrogation area� to estimate the uniform average settling
drift velocity for the particle field. The vertical shift in the
cross-covariance peak between two full images was used to
determine the average vertical translation due to gravity. The
vertical particle shift resulting from a cross-covariance of the
full images of succeeding image pairs is �yPIV in Eq. �43�.
The �-squared matching scheme was sufficient for this ap-
plication as particle-to-particle distances were typically
6 �m or larger.

We quantified the accuracy of the particle tracking veloci-
metry �PTV� code using synthetic images with added Gauss-
ian white noise to mimic images from the experiments. The
PTV code located 62% of particles in the simulated images.
The code accurately detects the location of particles with an
uncertainty of approximately one half-pixel in the x or y
direction and an uncertainty in orientation of 0.02 radians.

C. Diffusivity measurements

We investigated the rotational dynamics of Ag particles to
measure the rotational diffusivity in the absence of a field.

FIG. 7. Peclet number of experimentally determined orientation
distributions of homogenous Ag particle for an applied field of
30 V/cm. The period of the field is varied from 1.25 to 10 ms to
show the quasisteady nature of the particle alignment beyond time
scale �VD=a2 /Def f for diffusion through the double layer.

FIG. 8. Image analysis flow chart. First, the background image
from each experiment was subtracted from an individual image.
Edge detection with a Prewitt filter was utilized to determine par-
ticle outlines. These outlines were enhanced and filled using mor-
phological processing including erosion and dilation. The remaining
connected regions of light pixels were then fit with an ellipse to
determine size and shape for thresholding. Particles whose repre-
sentative ellipses had an eccentricity greater than 0.97 and a length
in the range of 4–8 �m were accepted as valid particle images. The
center coordinates and orientation were determined for these
particles from the representative ellipse.
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These measurements also provided information regarding
contributions of image noise �including the effects of out-of-
focus particle regions� to the diffusivity measurements. The
particles were imaged at frame rates from 2 to 20 fps while
settling through the capillary. The rotational deflections of
the particles between images were calculated with the PTV
code. These deflection results were combined over all images
�and across particles� at a fixed frame rate and the statistical
variance in deflection was calculated. Fig. 9 shows a plot of
rotational deflection variance versus time between frames
�fps−1�. These data were then fit with linear regression. We
model the contributions to particle rotation from image noise
and particle diffusion as follows:

�� measured
2 = 2D� t + �� noise

2 , �44�

where ��
2 is the variance of the deflections, and t is the time

between measurements. This additive model is suggested by
models used in estimating the contribution of image noise to
spherical particle displacements �65�. Fig. 9 shows variance
data for the rotation of Ag particles. Image noise results in a
measurable y intercept for the extrapolated rotational vari-
ance data. We can use the regression fit to solve for diffusiv-
ity in Eq. �44� and interpret this as data normalized to ex-
clude image noise in the particle rotational displacement
statistics.

We compare the measured diffusivity value for the experi-
mental conditions to theoretical values. The experimental
diffusivity value for the Ag particles was 0.048 rad2 /s. The
theoretical value for a cylindrical particle of this size,
0.044 rad2 /s, is determined using the relation given by
Yamakawa �66�,

D� =
3kT

��L3 �ln�L/2b� + 2 ln 2 − 11/6� . �45�

Our experimental measurement is 9% greater than the theo-
retical value for a cylindrical particle and 14% less than the
theoretical diffusivity for a spheroidal particle of equal
length and diameter, 0.056 rad2 /s, from Eq. �37�.

Image noise also contributes to measurements of particle
alignment under applied electric fields. Both rotational
diffusion and image noise broaden measured orientation
distribution peaks. We incorporate the contribution of image
noise to predicted particle distributions by adding the
effective diffusivity due to image noise to the theoretical
diffusivity predicted by Eqs. �37� or �45�. This enables direct
comparisons of the model and experimental data. The effec-
tive diffusivity due to image noise is defined simply as
D�,n=��measured

2 / �2t�. The data of Fig. 9 yields an image-
noise-based diffusivity value of D�,n=0.59 rad2 /s, approxi-
mately 20% greater than actual rotational diffusivity. This
value can perhaps be reduced using larger numerical aperture
and larger magnification objectives, but only at the expense
of reduced fields of view and significantly less particle data
per image sequence. The capillary size used in these experi-
ments was selected to minimize particle-wall interaction and
necessitated the use of a relatively large working distance
objective to image the center plane. The optics optimized the
tradeoff between numerical aperture �NA�, magnification,
and working distance.

IV. RESULTS AND DISCUSSION

The measured orientation distributions of 6 �m long by
300 nm diameter particles were compared versus analytical
values at ac field strengths ranging from 10 to 90 V/cm. The
experimental orientation distributions were determined by
binning measured particle angles in all images into forty-one
4.4° increments for each field strength. We performed these
measurements for both silver and half-gold/half-silver
particles.

To achieve a relatively thin EDL the particles were sus-
pended in 0.14 mM KCl solution. This concentration was
selected due to significant particle agglomeration in higher
conductivity solutions. The double-layer thickness for this
solution was approximately 26 nm, resulting in a �D /b ratio
equal to 0.17. Values for ��D /b�exp�ze��o+E�c� /2kT�, re-
garding the applicability of Eq. �1� for the translation and
Eqs. �28b� and �29b� for the rotation, ranged from 0.3 to 0.5.
This range is based on the sum of a native zeta potential of
approximately 30 mV and an induced zeta potential magni-
tude, ��E�c, ranging from 3 to 27 mV. To achieve a rela-
tively thick EDL the particles were suspended in low-
conductivity �2 �S/cm� deionized water. This ion
concentration was the minimum achievable due to carbon
dioxide contamination from the atmosphere. The double-
layer thickness for particles in the deionized water was ap-
proximately 135 nm for a �D /b ratio equal to 0.91 and �D /c
ratio equal to 0.05. In this estimate of the double-layer thick-
ness, we assumed the ions in the water were solely from
carbon dioxide contamination creating carbonic acid in the
water �67�. The minimum and maximum �D /b values were
also limited by the available particle size. A compromise was
therefore made to use representative �D /b values to model
the thick and thin double-layer limits.

The results of the pure silver particle experiments in KCl
solution are shown in Fig. 10�a� and for half-gold/half-silver
in Fig. 10�b�. As the field strength increases, the distribution

FIG. 9. Variance of angular deflections for Ag particles versus
the time between deflection measurements. The slope of the experi-
mental data for the particles is determined using a linear fit. The
slope of the data set determines the rotational diffusivity. The
dashed line is the theoretical curve for diffusivity of these 6 �m
long by 300 nm diameter cylindrical particles. The y offset of the
experimental curve at �fps�−1=0 is due to image noise.
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curves for both particle types narrow. The alignment into the
field is enhanced by the increase in induced zeta potential
and by the stronger field acting on this polarized charge. For
Ag/Au particles, the particles are even more aligned than
the homogenous Ag particles at the same field strength. This
increased alignment is due to the additional rotation gener-
ated by gravity acting on the nonuniform density of the
particles.

The orientation distribution for pure silver particles in de-
ionized �DI� water is shown versus theoretical values in Fig.
10�c� and for half-gold/half-silver in Fig. 10�d�. For the par-
ticles in DI water, the alignment was enhanced by increased
field strength, similar to the results for the particles in KCl
solution. The alignment of the half-Au/half-Ag particles is
greater than that of the pure Ag particles due to the additional
torque from gravity.

Figure 11 shows plots of the standard deviation of particle
angles versus electric field for the homogenous and striped
particles in high- and low-conductivity solutions. Experi-
mental values are calculated directly from the orientation
data of all particles at a given field strength. The theoretical
curves are determined from Eqs. �5b�, �27b�, �32b�, and �40�,
and relevant parameters as described above.

As expected, the gravitational torque due to material
mismatch of the half-gold/half-silver particles decreases the
standard deviation of the orientation distribution curves com-
pared to pure silver particles. This is true for both the high-

and low-conductivity solutions. Another interesting observa-
tion is the increased alignment, and therefore decreased stan-
dard deviation, for particles with thin double layers versus
the same particle type with a thick EDL. The increase in the
alignment for thin EDL demonstrates the magnitude of ICEP
rotation on the particle.

Analytical values for the orientation distributions, ����,
were predicted using Eq. �40� with Peclet number values,
Pepol and Peperm. These Pe values were determined based on
the theory for 	pol and 	grav and independent estimates of
the relevant parameters. These independent estimates are the
particle dimensions �from the specification of the manufac-
turer�, the electrolyte ion density �from our buffer prepara-
tion�, and the rotational diffusivity. We used the experimen-
tally measured particle diffusivity values in the analytical
prediction of Pe to account for image noise. The justification
for this modification is explained in detail in Sec. III C. The
value for the rotational velocity in Pepol was predicted from
the time average of Eq. �27b� for the thin EDL model. For
the thick EDL model, the rotational velocity in Pepol was
predicted from the time average of Eq. �5b� using the DEP
torque value from Eq. �7b�. The rotational velocity in Pegrav
was predicted from Eq. �32b� with specific gravity of gold,
sgAu=19.3, and silver, sgAg=10.5 �68�.

The analytical results for the thin EDL particles at field
strengths ranging from 10 to 90 V/cm are shown using solid
lines with closed symbols in Figs. 10�a� and 10�b�. The

FIG. 10. Comparison of theoretical and experimental orientation distributions at five field strengths for pure silver particles and half-
gold/half-silver particles with thin EDL ��D /b=0.17� and intermediate EDL ��D /b=0.91�. The experimental data are shown using dashed
lines and open symbols at selected angles. The solid lines with solid symbols are the analytical solutions to the Fokker-Planck equation for
the distribution of particle angles. The full range of the plot �−90 to 90°� is not shown. �a� Pure silver particles with thin EDL ��D /b
=0.17�. �b� Half-gold/half-silver particles with thin EDL ��D /b=0.17�. �c� Pure silver particles with intermediate EDL ��D /b=0.91�. �d�
Half-gold/half-silver particles with intermediate EDL ��D /b=0.91�.
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model provides an upper bound for the alignment of the
particles as �D /b→0 and therefore consistently overpredicts
alignment of the particles for the given experimental condi-
tions, �D /b=0.17. The model does however predict the in-
crease in particle alignment with increased field strength due
to polarization. This is demonstrated by the narrowing of the
distribution for the Ag particles in Fig. 10�a�. The model also
captures the combined effects of polarization and gravity at
low field strength �10 V/cm�, as demonstrated in Fig. 10�b�
for the half-gold/half-silver particles.

The solid lines with closed symbols in Fig. 10�c� and Fig.
10�d� show the analytical results for ����. For the thick EDL
case, the experimental and theoretical curves show good
agreement for both Ag and Ag/Au particles. The agreement
is best for Ag/Au particles at low field strengths
�10–30 V/cm�. The predicted increase in particle alignment
due to increased polarization is demonstrated by the narrow-
ing of the distribution for the Ag particles in Fig. 10�c�. The
additional increase in alignment due to nonuniform density is
also captured in the model. This result is verified in Fig.
10�d� for the half-gold/half-silver particles.

Figure 11�a� and Fig. 11�b� compare the predicted and
experimental dependence of the standard deviation in par-
ticle angles on electric field strength for Ag and Ag/Au par-
ticles. For Ag and Ag/Au particles with thick EDL, the ex-
perimental results are predicted within 10% over the range of
applied fields. For thin EDL, the theoretical �� curve pro-
vides a lower bound for predicting the experimental values.
The predictions for the Ag/Au particles include the rotation
of the particles due to gravity.

V. CONCLUSION

We have presented analytical results for the rotation of
homogenous and striped rodlike metal particles in an applied

field for the limiting cases of thin ��D�b� and thick ��D


c� electric double layers. The two models include rota-
tional velocity components from �uniform or nonuniform�
native surface charge along the particle length and the non-
uniform induced surface charge due to the conducting nature
of the particle. The distribution of particle orientations in a
dilute suspension is determined from the balance of electric-
field-driven rotation and rotational diffusion. This distribu-
tion is especially important for solutions with thick EDL, in
which electrophoretic translation of rodlike particles is
orientation dependent.

The experimental results were presented for solid Ag and
for half-Ag/half-Au particles in relatively thin and relatively
thick EDL conditions are in good agreement with the ana-
lytical models for the thick EDL case. For the thin EDL case,
the analytical models overpredict alignment. This is likely
due to the experimental �D /b ratio equal to 0.17, although
the model is for �D /b→0. For particles with striping pat-
terns that are not symmetric regarding particle length, the net
effect of the stripes is to impart a torque on the particle due
to gravity. This dipole causes a rotation of the particle that
enhances alignment. This enhancement is demonstrated by
comparison of results for solid Ag and half-Ag/half-Au par-
ticles. The electric torque on the particle due to induced po-
larization is also shown to be greater for particles with thin
versus thick electric double layers. This result is analogous to
the comparison of the translational electrophoretic velocity
of spheres in the thin and thick EDL limits.
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FIG. 11. Standard deviation of particle angles for Ag �a� and Ag/Au �b� particles in high- and low-conductivity solutions with different
applied field strengths. Experimental values are calculated directly from the orientation data of all particles at a given field strength. The
theoretical curves are determined from the predicted orientation distributions with the AgAu curves including predicted alignment due to
gravitational torque.
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